HIV in the lung: virological and immunological findings in long-term ART

Paul Collini
Florey Institute for Host Pathogen Interactions &
Department of Infection, Immunity and Cardiovascular Diseases
The University of Sheffield
HIV+ individuals still at risk of pneumococcal infection and chronic lung disease in the HAART era.
Driven by host factors and systemic and lung effects of chronic HIV

14 HIV+ patients
With UDE VL and Normal CD4 on HAART
Vs
3 HIV+ not on HAART
Vs
12 HIV-ve controls

ALL
Non smokers
No HBV/HCV
No Acute lung pathology

HIV+ AM demonstrated impaired intracellular killing of pneumococci

* p<0.05 Mann-Whitney

Submitted to AJRCCM August 2018
HIV+ on ART have a BAL lymphocytosis

....with a CD8+ predominance of T cells
Effect of Highly Active Antiretroviral Therapy on Viral Burden in the Lungs of HIV-Infected Subjects

HIV-1 in the lung?

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>HIV status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Positive (ART naïve)</td>
</tr>
<tr>
<td></td>
<td>Seronegative</td>
</tr>
<tr>
<td></td>
<td>Seronegative</td>
</tr>
<tr>
<td></td>
<td>Seronegative</td>
</tr>
</tbody>
</table>

BAL analysed for HIV-1 RNA
- 14 HIV-positive
 - 13/14 on ART; 1/13 ART naïve
- 3 HIV-negative

All volunteers were
- non-smoking adults
- no active or chronic lung disease
- No active viral hepatitis.

p24 in AM cultures from 2/2 ART-naïve and 3/10 ART-treated HIV-1-seropositive donors
HIV-1 in the lung?

6 -12 ml of acellular BAL

Ultracentrifuged 240,000g x 20 min at 4°C

Abbott m2000rt platform

Tested for inhibition and sensitivity
Plasma & BAL obtained from HIV-negative volunteers spiked with WHO 3rd International HIV-1 RNA Standard & BAL from HIV-positive ART naive

<table>
<thead>
<tr>
<th>Standard Input (log_{10} cps/ml)</th>
<th>Plasma detection (log_{10} cps/ml)</th>
<th>BAL detection (log_{10} cps/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of 2</td>
<td>Mean of 2</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>2.7</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>3.7</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>RP2003 (ART Naive)</td>
<td>1.9 log_{10}cps/ml</td>
<td></td>
</tr>
</tbody>
</table>

Input Vol. LLD

12 mL ND < 1 cp/mL
6 mL ND < 2cps/mL

Submitted to AJRCCM August 2018
HIV-1 in the lung?

6-12 ml of acellular BAL

Ultracentrifuged 240,000g x 20 min at 4°C

Abbott m2000rt platform

Tested for inhibition and sensitivity
Plasma & BAL obtained from HIV-negative volunteers spiked with WHO 3rd International HIV-1 RNA Standard & BAL from HIV-positive ART naive

<table>
<thead>
<tr>
<th>Sample</th>
<th>Volume (ml)</th>
<th>Replicate 1</th>
<th>Replicate 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZP2303</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td>< 1 cp/ml</td>
</tr>
<tr>
<td>WP2102</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td>< 1 cp/ml</td>
</tr>
<tr>
<td>UP2307</td>
<td>12</td>
<td>4 cps/ml</td>
<td>2 cps/ml</td>
</tr>
<tr>
<td>AP1109</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td>< 1 cp/ml</td>
</tr>
<tr>
<td>VP0910</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td>1 cp/ml</td>
</tr>
<tr>
<td>TP2401</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td>< 1 cp/ml</td>
</tr>
<tr>
<td>SP1501</td>
<td>11</td>
<td>< 1-2cps/ml</td>
<td>< 1-2cps/ml</td>
</tr>
<tr>
<td>MP2802</td>
<td>6</td>
<td>< 2cps/mL</td>
<td></td>
</tr>
<tr>
<td>HP1402</td>
<td>11</td>
<td>< 1-2cps/ml</td>
<td></td>
</tr>
<tr>
<td>EP1101</td>
<td>9.5</td>
<td>< 1-2cps/ml</td>
<td></td>
</tr>
<tr>
<td>OP1604</td>
<td>9.5</td>
<td>< 1-2cps/ml</td>
<td></td>
</tr>
<tr>
<td>QP2310</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td></td>
</tr>
<tr>
<td>XP3007</td>
<td>12</td>
<td>< 1 cp/ml</td>
<td></td>
</tr>
</tbody>
</table>

Submitted to AJRCCM August 2018
HIV-1 in the lung?
HIV gp120 Induces Mucus Formation in Human Bronchial Epithelial Cells through CXCR4/α7-Nicotinic Acetylcholine Receptors

Sravanthi Gundavarapu¹, Neerad C. Mishra¹, Shashi P. Singh¹, Raymond J. Langley¹, Ali Imran Saeed², Carol A. Feghali-Bostwick³, J. Michael McIntosh⁴, Julie Hutt⁵, Ramakrishna Hegde⁶, Shilpa Buch⁷, Mohan L. Sopori⁷

¹Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America, ²Pulmonary and Critical Care Medicine, University of
does gp120 mediate lung pathology?

gp120 detectable in BAL fluid despite HAART

sandwich ELISA monoclonal anti-gp120 1.4E, 1.7B, EH21

gp120 treatment of MDM impairs apoptosis associated killing of pneumococci

gp120 induces oxidative stress in bronchial-epithelial cells

BEAS-2Bs + CellROX stain 30mins

gp120 detectable in BAL fluid gp120

n = 11
detected
not detected

n=15, *p<0.05, paired t-test

Submitted to AJRCCM August 2018
Conclusions

• There remains elevated risk of pneumococcal infection and chronic lung disease risk despite suppressive ART
• Evidence of persistent lower respiratory tract T cell population imbalance and macrophage dysfunction
• Detectable HIV-1 RNA and gp120
• gp120 may macrophage dysfunction and damage bronchial epithelium
Acknowledgements

University of Sheffield
David Dockrell
MD Mohasin
Martin Bewley
Katie Cook, Ian Geary
Jonathan Kilby
Sue Clark
Robert Read

Sheffield Teaching Hospitals
Endoscopy Unit
Clinical Research Facility
Sarah Moll

University of Liverpool
Anna Maria Geretti
Thanos Papadimitropoulos,
Apostolos Beloukas,

LSTM, Liverpool
Steve Gordon

Tulane University, New Orleans
James E Robinson

UCL, London
Maddy Noursadeghi

Patients & Volunteers